3484 independent reflections

 $R_{\rm int} = 0.082$

1380 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-Cyano-3-[4-(dimethylamino)phenyl]-N-phenylprop-2-enamide

Abdullah Mohamed Asiri,^a Mehmet Akkurt,^b* Salman A. Khan,^a Islam Ullah Khan^c and Muhammad Nadeem Arshad^c

^aChemistry Department, Faculty of Science, King Abdul-Aziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, ^bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, and ^cDepartment of Chemistry, Government College University, Lahore, Pakistan Correspondence e-mail: akkurt@ercives.edu.tr

Received 11 May 2009; accepted 11 May 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.060; wR factor = 0.165; data-to-parameter ratio = 17.2.

In the title compound, $C_{18}H_{17}N_3O$, the dihedral angle between the phenyl and benzene rings is $11.22 (14)^{\circ}$. Apart from the methyl H atoms, the molecule is close to planar, with a maximum deviation of 0.145 (3) Å. Intramolecular $C-H \cdots O$ and $C-H \cdots N$ interactions occur. In the crystal, inversion dimers linked by pairs of N-H···N hydrogen bonds occur, resulting in an $R_2^2(12)$ ring motif. Further C-H···N and C-H···O bonds generate $R_1^2(7)$ and $R_2^2(22)$ motifs and a C- $H \cdots \pi$ interaction also occurs.

Related literature

For background on the properties and uses of organic dyes, see: Grabowski et al. (2003); Guo et al. (2007); Kwak et al. (2008); Moylan et al. (1996). For reference structural data, see Allen et al. (1987). For graph-set terminology, see: Bernstein et al. (1995).

Experimental

Crystal data C18H17N3O $M_r = 291.35$ Monoclinic, $P2_1/c$ a = 12.0639 (19) Å

b = 19.983 (3) Å

c = 6.3960 (9) Å $\beta = 94.870 \ (6)^{\circ}$

V = 1536.3 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K $0.44 \times 0.09 \times 0.07 \text{ mm}$ Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: none 15701 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	202 parameters
$wR(F^2) = 0.165$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
3484 reflections	$\Delta \rho_{\rm min} = -0.16 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C5−H5···O1	0.93	2.30	2.892 (4)	121
C12−H12···N2	0.93	2.61	3.445 (4)	149
$N1 - H1A \cdot \cdot \cdot N2^{i}$	0.86	2.50	3.245 (3)	146
$C1 - H1 \cdot \cdot \cdot N2^{i}$	0.93	2.58	3.338 (4)	139
C18−H18A···O1 ⁱⁱ	0.96	2.49	3.439 (4)	169
$C3-H3\cdots Cg1^{iii}$	0.93	2.66	3.514 (3)	152

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z; (iii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$. Cg1 is the centroid of the C1-C6 phenyl ring.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

AMA acknowledges the Chemistry Department, Faculty of Science, King Abdul-Aziz University, for providing the laboratories and facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2974).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Grabowski, Z. R., Rotkiewicz, K. & Rettig, W. (2003). Chem. Rev. 103, 3899-4031
- Guo, Z. Q., Zhu, W. H., Shen, L. J. & Tian, H. (2007). Angew. Chem. Int. Ed. 46, 5549-5553.
- Kwak, G., Wang, S., Choi, M. S., Kim, H., Choi, K. H., Han, Y. S., Hur, Y. & Kim, S. H. (2008). Dyes Pigments, 78, 25-33.
- Moylan, C. R., Ermer, S., Lovejoy, S. M., McComb, I. H., Leung, D. S., Wortmann, R., Krdmer, P. & Twieg, R. J. (1996). J. Am. Chem. Soc. 118, 12950-12955.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2009). E65, o1303 [doi:10.1107/81600536809017681]

(E)-2-Cyano-3-[4-(dimethylamino)phenyl]-N-phenylprop-2-enamide

A. M. Asiri, M. Akkurt, S. A. Khan, I. U. Khan and M. N. Arshad

Comment

Organic dyes with donor– π -conjugation–acceptor (D– π –A) molecular structure have attracted much attention because of their inherent nonlinear optical characteristics, which are highly sensitive to changes in the external environment such as polarity and pH of media, due to their intrinsic character (*e.g.* Grabowski *et al.*, 2003). They have been intensively developed for applications using as photo-(PL) and electroluminescent (EL) materials in the fields of dye laser (Moylan *et al.*, 1996), fluorescent sonser and logic memory (Guo *et al.*, 2007), and organic light-emitting device (OLED) (Kwak *et al.*, 2008). The title compound, (I) (Fig. 1), is a representative of Push-Pull systems with dimethylamino group as a donor at one end of the conjugated system and cyano and carboonyl as acceptor at the other end.

The molecule of (I) contains a phenyl ring and a benzene ring which makes a dihedral angle of 11.22 (14)°. Except the methyl H atoms, the title molecule is almost planar, with a maximum deviation of 0.145 (3) Å for C12 and C13. The bond lengths and angles are in normal range (Allen *et al.*, 1987). The molecules of the title compound form in which two N—H···N hydrogen bonds. The N—H···N, C—H···N and C—H···O interactions generates $R_2^{-2}(12)$, $R_1^{-2}(7)$ and $R_2^{-2}(22)$ motifs (Fig. 2) (Bernstein *et al.* 1995). Fig. 3 shows the molecular packing for (I) viewed down the *a* axis showing the hydrogen bonding interactions (dashed lines). Molecules form a *zigzag* pattern along the *b* axis.

The crystal structure is stabilized by intermolecular N—H···N, C—H···O and C—H···N hydrogen bonding, and C—H··· π interactions (Table 1).

Experimental

N-Phenyl-2-cyanoacetamide (1.60 g, 0.010 mol) and 4-*N*,*N*-dimethylaminobenzaldehyde (1.49 g, 0.010 mol) were dissolved in 50 ml of ethanol then heated to boiling before pipyridine (0.5 ml) was added. The reaction mixture was refluxed for 7 h, cooled then the precipitate was filtered and recrystalized from ethanol to yield red prisms of (I) [yield: 90%, m.p.: 382–384 K]. IR;v (cm⁻¹): 3348, 2941, 2890 (–C—H), 2198 (CN), 1671 (C=O), 1601 (C=C), 1580 (C=C).

Refinement

The H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.96 Å, and refined as riding with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ (parent atom).

Figures

Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

Fig. 2. View of the hydrogen bonding interactions (dashed lines) for (I). H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (*a*) 1-x, -y, 1-z; (*b*) 1-x, -y, -z].

Fig. 3. The molecular packing for (I) viewed down the a axis showing the hydrogen bonding interactions (dashed lines). Molecules form a *zigzag* pattern along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

(E)-2-Cyano-3-[4-(dimethylamino)phenyl]-N-phenylprop-2-enamide

Crystal data

C ₁₈ H ₁₇ N ₃ O	$F_{000} = 616$
$M_r = 291.35$	$D_{\rm x} = 1.260 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1223 reflections
a = 12.0639 (19) Å	$\theta = 3.4 - 19.8^{\circ}$
b = 19.983 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 6.3960 (9) Å	T = 296 K
$\beta = 94.870 \ (6)^{\circ}$	Prism, red
$V = 1536.3 (4) \text{ Å}^3$	$0.44 \times 0.09 \times 0.07 \ mm$
Z = 4	

Data collection

Bruker Kappa APEXII CCD diffractometer	1380 reflections with $I > 2\sigma(I)$
Radiation source: sealed tube	$R_{\rm int} = 0.082$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 296 K	$\theta_{\min} = 2.0^{\circ}$
ϕ and ω scans	$h = -15 \rightarrow 15$
Absorption correction: none	$k = -25 \rightarrow 25$
15701 measured reflections	$l = -8 \rightarrow 5$
3484 independent reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.060$

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0643P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.165$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 0.97	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
3484 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
202 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=KFc[1+0.001XFc^2\Lambda^3/sin(2\Theta)]^{-1/4}$
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0038 (12)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.37797 (16)	0.07494 (10)	0.5929 (3)	0.0639 (8)
N1	0.19658 (18)	0.07922 (10)	0.6643 (3)	0.0444 (8)
N2	0.0364 (2)	-0.00214 (14)	0.2850 (4)	0.0714 (10)
N3	0.3109 (2)	-0.16820 (12)	-0.4827 (4)	0.0619 (10)
C1	0.1026 (3)	0.13303 (16)	0.9294 (5)	0.0740 (12)
C2	0.0994 (3)	0.17166 (17)	1.1086 (6)	0.0876 (17)
C3	0.1948 (4)	0.19793 (16)	1.2024 (5)	0.0757 (16)
C4	0.2923 (3)	0.18648 (16)	1.1198 (5)	0.0754 (14)
C5	0.2976 (3)	0.14743 (15)	0.9411 (5)	0.0615 (11)
C6	0.2018 (2)	0.12058 (13)	0.8457 (4)	0.0439 (10)
C7	0.2811 (2)	0.05968 (13)	0.5505 (4)	0.0425 (10)
C8	0.2467 (2)	0.01696 (13)	0.3648 (4)	0.0391 (9)
С9	0.1308 (3)	0.00579 (14)	0.3162 (4)	0.0480 (10)
C10	0.3244 (2)	-0.00906 (13)	0.2492 (4)	0.0414 (9)
C11	0.3150 (2)	-0.04902 (13)	0.0609 (4)	0.0392 (9)
C12	0.2159 (2)	-0.06559 (14)	-0.0565 (4)	0.0480 (10)
C13	0.2145 (2)	-0.10416 (14)	-0.2344 (4)	0.0488 (10)
C14	0.3122 (2)	-0.12898 (14)	-0.3082 (4)	0.0458 (10)
C15	0.4128 (2)	-0.11114 (14)	-0.1943 (4)	0.0506 (11)
C16	0.4124 (2)	-0.07274 (13)	-0.0153 (4)	0.0471 (10)
C17	0.2077 (3)	-0.18754 (16)	-0.5982 (5)	0.0770 (16)
C18	0.4122 (3)	-0.19039 (16)	-0.5680 (5)	0.0755 (15)
H1	0.03700	0.11530	0.86510	0.0890*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H1A	0.13160	0.06470	0.62090	0.0530*
H2	0.03200	0.17960	1.16470	0.1050*
Н3	0.19290	0.22370	1.32310	0.0910*
H4	0.35720	0.20510	1.18370	0.0900*
H5	0.36550	0.13960	0.88690	0.0740*
H10	0.39720	0.00050	0.30000	0.0500*
H12	0.14890	-0.05000	-0.01300	0.0580*
H13	0.14660	-0.11400	-0.30780	0.0590*
H15	0.48010	-0.12540	-0.24010	0.0610*
H16	0.48010	-0.06220	0.05780	0.0570*
H17A	0.15590	-0.20220	-0.50190	0.1150*
H17B	0.22150	-0.22340	-0.69260	0.1150*
H17C	0.17720	-0.14990	-0.67680	0.1150*
H18A	0.46280	-0.15340	-0.57210	0.1130*
H18B	0.39490	-0.20720	-0.70750	0.1130*
H18C	0.44600	-0.22520	-0.48100	0.1130*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0432 (13)	0.0847 (17)	0.0632 (13)	-0.0141 (12)	0.0010 (10)	-0.0260 (12)
N1	0.0437 (14)	0.0484 (15)	0.0409 (12)	-0.0052 (12)	0.0033 (11)	-0.0120 (11)
N2	0.0486 (17)	0.106 (2)	0.0607 (16)	-0.0128 (16)	0.0113 (13)	-0.0316 (15)
N3	0.0715 (19)	0.0641 (18)	0.0502 (14)	-0.0024 (15)	0.0063 (14)	-0.0211 (13)
C1	0.075 (2)	0.073 (2)	0.079 (2)	-0.031 (2)	0.035 (2)	-0.031 (2)
C2	0.108 (3)	0.075 (3)	0.088 (3)	-0.035 (2)	0.056 (2)	-0.036 (2)
C3	0.129 (4)	0.050 (2)	0.0486 (19)	-0.003 (2)	0.010 (2)	-0.0106 (16)
C4	0.087 (3)	0.068 (2)	0.066 (2)	0.019 (2)	-0.024 (2)	-0.0251 (19)
C5	0.061 (2)	0.059 (2)	0.0608 (19)	0.0158 (17)	-0.0159 (16)	-0.0210 (17)
C6	0.060 (2)	0.0341 (16)	0.0377 (14)	0.0019 (15)	0.0046 (15)	0.0007 (13)
C7	0.0429 (18)	0.0431 (18)	0.0412 (15)	-0.0066 (15)	0.0020 (14)	-0.0047 (13)
C8	0.0359 (16)	0.0451 (18)	0.0361 (13)	-0.0036 (13)	0.0013 (12)	0.0012 (12)
C9	0.0472 (19)	0.058 (2)	0.0396 (15)	-0.0055 (16)	0.0085 (14)	-0.0122 (14)
C10	0.0401 (16)	0.0427 (17)	0.0408 (14)	-0.0019 (14)	-0.0004 (13)	0.0003 (13)
C11	0.0377 (17)	0.0409 (17)	0.0387 (14)	-0.0017 (13)	0.0018 (13)	-0.0005 (13)
C12	0.0423 (18)	0.060 (2)	0.0425 (15)	0.0023 (15)	0.0080 (13)	-0.0058 (14)
C13	0.0477 (19)	0.058 (2)	0.0399 (15)	-0.0051 (15)	-0.0006 (13)	-0.0048 (14)
C14	0.058 (2)	0.0411 (18)	0.0389 (15)	-0.0003 (15)	0.0071 (15)	-0.0008 (13)
C15	0.051 (2)	0.049 (2)	0.0526 (17)	0.0034 (15)	0.0100 (15)	-0.0066 (15)
C16	0.0447 (18)	0.0462 (19)	0.0503 (16)	0.0012 (15)	0.0037 (14)	-0.0038 (14)
C17	0.093 (3)	0.079 (3)	0.057 (2)	-0.007 (2)	-0.0048 (19)	-0.0198 (18)
C18	0.098 (3)	0.073 (3)	0.0592 (19)	0.001 (2)	0.0285 (19)	-0.0163 (17)

Geometric parameters (Å, °)

O1—C7	1.216 (3)	C12—C13	1.373 (4)
N1—C6	1.422 (3)	C13—C14	1.397 (4)
N1—C7	1.359 (3)	C14—C15	1.407 (4)
N2—C9	1.150 (4)	C15—C16	1.379 (4)

N3—C14	1.363 (4)	C1—H1	0.9300
N3—C17	1.445 (4)	C2—H2	0.9300
N3—C18	1.450 (4)	С3—Н3	0.9300
N1—H1A	0.8600	C4—H4	0.9300
C1—C2	1.385 (5)	С5—Н5	0.9300
C1—C6	1.375 (4)	C10—H10	0.9300
C2—C3	1.358 (6)	C12—H12	0.9300
C3—C4	1.349 (6)	C13—H13	0.9300
C4—C5	1.390 (4)	C15—H15	0.9300
C5—C6	1.370 (4)	C16—H16	0.9300
С7—С8	1.493 (4)	С17—Н17А	0.9600
С8—С9	1.424 (4)	С17—Н17В	0.9600
C8—C10	1.347 (4)	С17—Н17С	0.9600
C10—C11	1.442 (4)	C18—H18A	0.9600
C11—C16	1.393 (3)	C18—H18B	0.9600
C11—C12	1.397 (4)	C18—H18C	0.9600
C6—N1—C7	128 4 (2)	C2—C1—H1	120.00
C14—N3—C17	121.5 (2)	C6—C1—H1	120.00
C14—N3—C18	122.2 (2)	С1—С2—Н2	120.00
C17—N3—C18	116.3 (3)	C3—C2—H2	120.00
C6—N1—H1A	116.00	С2—С3—Н3	120.00
C7—N1—H1A	116.00	С4—С3—Н3	120.00
C_2 — C_1 — C_6	120.6 (3)	C3—C4—H4	119.00
C1 - C2 - C3	1199(3)	C5—C4—H4	119.00
$C_2 - C_3 - C_4$	119.7 (3)	C4—C5—H5	120.00
C_{3} C_{4} C_{5}	121 3 (3)	С6—С5—Н5	120.00
C4 - C5 - C6	1194(3)	C8—C10—H10	114.00
N1-C6-C5	1247(2)	$C_{11} - C_{10} - H_{10}$	114.00
C1 - C6 - C5	1190(3)	C11 - C12 - H12	119.00
N1 - C6 - C1	1163(2)	C13 - C12 - H12	119.00
N1 - C7 - C8	114.8 (2)	C12 - C13 - H13	119.00
01 - C7 - N1	1240(2)	C12 = C13 = H13	119.00
01 - 07 - 08	121.0(2) 121.2(2)	C14-C15-H15	120.00
C9 - C8 - C10	121.2(2) 1224(2)	C16-C15-H15	120.00
C7 - C8 - C10	122.4(2) 1199(2)	C11-C16-H16	119.00
C7 - C8 - C9	117.7(2)	C15-C16-H16	119.00
$N_{2}^{2} = C_{3}^{2} = C_{3}^{2}$	177.1 (3)	N3_C17_H174	109.00
(8-C10-C11)	177.1(3) 131.6(2)	N3_C17_H17B	109.00
C_{12} C_{11} C_{16}	1161(2)	N3_C17_H17C	109.00
$C_{12} = C_{11} = C_{10}$	110.1(2) 125.7(2)	H17A_C17_H17B	109.00
$C_{10} = C_{11} = C_{12}$	123.7(2) 118.2(2)	H17A C17 H17C	109.00
$C_{10} = C_{11} = C_{10}$	110.2(2) 121.0(2)	H17R C17 H17C	110.00
C_{12} C_{12} C_{13} C_{14}	121.7(2) 121.9(2)	N3_C18_H18A	100.00
$N_{12} = C_{13} = C_{14}$	121.7(2) 121.2(2)	N2 C18 H18P	109.00
$N_{2} = C_{14} = C_{13}$	121.3(2) 1220(2)	N3 C18 H18C	109.00
133 - C14 - C13	122.0(2)	H18A C18 H18D	109.00
C_{13} $-C_{14}$ $-C_{15}$ C_{16}	110.0(2) 120.5(2)	H10A-C10-H10D	109.00
$C_{14} = C_{13} = C_{10}$	120.3(2)	$\Pi I 0 A - C I 0 - \Pi I 0 C$	100.00
011-010-013	122.9 (2)	ПІОД—СІО—ПІОС	109.00

supplementary materials

C6—N1—C7—O1	1.3 (4)	O1—C7—C8—C9	-175.1 (2)
C7—N1—C6—C1	179.4 (3)	O1—C7—C8—C10	4.5 (4)
C7—N1—C6—C5	-1.4 (4)	N1—C7—C8—C9	5.0 (3)
C6—N1—C7—C8	-178.8 (2)	C9—C8—C10—C11	2.3 (5)
C18—N3—C14—C15	-3.8 (4)	C7—C8—C10—C11	-177.2 (3)
C17—N3—C14—C13	-1.5 (4)	C8—C10—C11—C12	5.6 (5)
C18—N3—C14—C13	175.8 (3)	C8—C10—C11—C16	-175.5 (3)
C17—N3—C14—C15	179.0 (3)	C10-C11-C12-C13	-179.9 (3)
C2-C1-C6-N1	178.7 (3)	C16-C11-C12-C13	1.3 (4)
C2—C1—C6—C5	-0.6 (5)	C10-C11-C16-C15	-179.8 (2)
C6—C1—C2—C3	0.4 (5)	C12-C11-C16-C15	-0.8 (4)
C1—C2—C3—C4	0.3 (5)	C11-C12-C13-C14	-0.1 (4)
C2—C3—C4—C5	-0.8 (5)	C12-C13-C14-N3	178.9 (3)
C3—C4—C5—C6	0.7 (5)	C12-C13-C14-C15	-1.6 (4)
C4—C5—C6—N1	-179.1 (3)	N3-C14-C15-C16	-178.5 (3)
C4—C5—C6—C1	0.0 (4)	C13-C14-C15-C16	2.0 (4)
N1—C7—C8—C10	-175.5 (2)	C14-C15-C16-C11	-0.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
С5—Н5…О1	0.93	2.30	2.892 (4)	121
C12—H12···N2	0.93	2.61	3.445 (4)	149
$N1$ — $H1A$ ··· $N2^{i}$	0.86	2.50	3.245 (3)	146
C1—H1···N2 ⁱ	0.93	2.58	3.338 (4)	139
C18—H18A···O1 ⁱⁱ	0.96	2.49	3.439 (4)	169
C3—H3···Cg1 ⁱⁱⁱ	0.93	2.66	3.514 (3)	152

Symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*; (iii) *x*, -*y*+1/2, *z*+1/2.

Fig. 3